Areas of Expertise

- Creation of drug delivery systems to meet patient needs
- Bioavailability enhancement
- Synthesis of novel polysaccharide derivatives and biomaterials
- Chemistry of cellulose and its derivatives
- Polysaccharide chemistry
- Structure-property-performance relationships of biomaterials and derivatives

Regioselective Modification of Polysaccharides

We design novel polymers for amorphous solid dispersion delivery systems from benign polysaccharides.

Cellulosic Backbone:
- Biodegradable and non-toxic
- Hydrophobic side-chain
- For polymer-drug miscibility

Terminal Carboxyl Groups
- pH triggered drug release
- Polymer-drug interaction

Select Synthetic Strategies

Olefin Cross Metathesis: a mild and efficient approach to impart a wide range of functionality.

Selective Oxidation: Hydrophobic modification of hydroxyalkyl cellulose derivatives followed by TEMPO oxidation gives amphipilic and pH responsive polymers for ASD applications.

Drug Delivery

Polysaccharide-Based Block Copolymers

In this study, we focused on developing synthetic strategies which can regioslectively modify terminal ends of polysaccharide derivatives and build polysaccharide-based block copolymers. These approaches, including solvolysis, olefin cross-metathesis, amine alkylation and azide-alkyne cycloaddition, have generated series of trimethyl cellulose-based block copolymers and dextran-based block copolymers.

Acknowledgments

The Edgar Research Group
Kevin Edgar\(^1\), Junyi Chen\(^1,3\), Chengzhe Gao\(^1,3\), Brittany Nichols\(^1,3\), Diana Novo\(^1,3\), Stella Petrova\(^1,3\), Yang Zhou\(^1,3\)

Macromolecules Innovation Institute\(^1\), Departments of Sustainable Biomaterials\(^2\) and Chemistry\(^3\)
Virginia Tech, Blacksburg, VA 24061