Virginia Tech® home

Diego Troya

Professor
Diego Troya
421D Davidson Hall

Research Interests

The Troya group is interested in a variety of problems in the molecular sciences ranging from chemical reactivity to structure and function. We leverage a wide array of computational techniques, including quantum-mechanical calculations and molecular-dynamics simulations, to investigate a kaleidoscopic portfolio of chemical problems of fundamental and applied interest. A distinguishing element of our research is our interest in collaborative research with experimentalists. We currently enjoy rewarding scientific collaborations with many research groups within the Chemistry department and beyond, with a focus on material synthesis, properties, and function. 

Guided by this scientifically rich, collaborative milieu, we have been recently interested in developing materials for chemical-warfare agent decontamination and for transformative storage of molecules of societal impact. Our most recent work examines the structure, properties, and chemistry of novel single-atom catalytic materials, including single atoms of platinum anchored on metal-oxide surfaces, and single atoms of Cu deposited on highly porous and robust metal-organic frameworks. The reactivity afforded by single transition-metal atoms supported on a variety of materials transcends the well-known elemental chemistry of extended surfaces and provides new avenues for advantageous molecular transformations. For instance, we expect that optimum single-atom materials will be able to catalytically decompose highly toxic nerve and vesicant agents more efficiently than extant materials. 

  1. Reversible Dissociation for Effective Storage of Diborane Gas within the UiO-66-NH2 Metal-Organic Framework
    N. B. Jones, B. Gibbons, A. J. Morris, J. R. Morris, and D, Troya
    ACS Applied Materials & Interfaces, (2022), In Press, doi: 10.1021/acsami.1c24115
  2. Bifurcated Dihydrogen Bonding in the Uptake of Gas-Phase Diborane on Silica
    N. B. Jones, C. H. Sharp, D. Troya, and J. R. Morris
    Journal of Physical Chemistry Letters, 12, 4987-4992 (2021)
  3. Outdoor Dissolution and Photodegradation of Insensitive Munitions Formulations IMX-101 and IMX-104: Photolytic Transformation Pathway and Mechanism Study
    C. Qin, L. Abrell, D. Troya, E. Hunt, S. Taylor, and K. Dontsova
    Chemosphere, 280, 130672-1/9 (2021)
  4. Semiconducting and Metallic [5,5] Fullertube Nanowires: Characterization of Pristine D5h(1)-C90 and D5d(1)-C100
    S. Stevenson, X. Liu, D. M. Sublett Jr., R. M. Koenig, T. L. Seeler, K. R. Tepper, H. M Franklin, X. Wang, R. Huang, X. Feng, K. Cover, D. Troya, N. Shanaiah, R. J. Bodnar, and H. C. Dorn
    Journal of the American Chemical Society, 143, 4593-4599 (2021)
  5. Atomic Resolution Tracking of Nerve-Agent Simulant Decomposition and Host Metal−Organic Framework Response in Real Space
    M. W. Terban, S. K. Ghose, A. M. Plonka, D. Troya, P. Juhás, R. Dinnebier, J. J. Mahle, W. O. Gordon, and A. I. Frenkel
    Communications Chemistry, 4, 1-10 (2021)
  6. High-Resolution Comonomer Sequencing of Blocky Brominated Syndiotactic Polystyrene Copolymers Using 13C NMR Spectroscopy and Computer Simulations
    K. F. Noble, D. Troya, S. J. Talley, J. Ilavsky, and R. B. Moore
    Macromolecules 53, 9539-9552 (2020)
  7. Multichannel Dynamics in the OH+n-butane Reaction Revealed by Crossed-beam Slice Imaging and Quasiclassical Trajectory Calculations
    H. Li, D. Troya, and A. G. Suits
    J. Chem. Phys. 153, 014302-1/8 (2020)
  8. Relating Geometric Nanoconfinement and Local Molecular Environment to Diffusion in Ionic Polymer Membranes
    R. Zhang, Y. Chen., D. Troya, and L. A. Madsen
    Macromolecules 53, 3296-3305 (2020)
  9. Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents
    T. G. Grissom, A. M. Plonka, C. H. Sharp, A. M. Ebrahim, Y. Tian, D. L. Collins-Wildman, A. L. Kaledin, H. J. Siegal, D. Troya, C. L. Hill, A. I. Frenkel, D. G. Musaev, W. O. Gordon, C. J. Karwacki, M. B. Mitchell, and J. R. Morris
    ACS Applied Materials & Interfaces, 12, 14641-14661 (2020)
  • NSF CAREER Award, 2006
  • Research Corporation COTTRELL Scholar Award, 2007
  • B.S. Universidad de La Rioga, Spain, 1997
  • Ph.D. Universidad de La Rioja, Spain, 2001
  • Postdoctoral Associate, Northwestern University, 2001–2004