Feng Lin

Assistant Professor

Analytical; Energy Sciences; Inorganic; Nanoscience and Nanomedicine

Research Interests

Renewable energy sources, such as solar and wind, have huge potential to minimize our dependence on fossil fuels and to reduce greenhouse gas emission. However, photovoltaics and wind are usually uncertain and intermittent, which create grand challenges to the traditional electricity grid at all levels. In order to make renewable energy a major contribution in the future energy portfolio (available whenever and wherever it is needed), it is important to develop efficient and cost effective solutions to energy storage and conversion. Storing grid electricity in batteries or catalytically converting electrical energy to renewable fuels and chemicals, such as hydrocarbons, alcohols and ammonium, can overcome the mismatch between renewable energy production and demand. The development of these technologies requires efficient electrochemical systems that can operate at appropriate temperatures with minimal energy losses. We need to make revolutionary advances in materials chemistry, discovering new materials, syntheses and functionalities. Therefore, our research is positioned at the crossroads of interdisciplinary energy research, with the ultimate goal of achieving unprecedented control of materials properties for next-generation energy applications as well as contributing to the fundamental progress of materials electrochemistry and solid state chemistry. The mission is to ignite major technological breakthroughs in energy sciences by understanding and controlling electronic-crystal structures, surface-interface properties, and electron-ion transport in energy materials and to resolve the scientific challenges in energy storage and renewable fuels. To accelerate the materials discovery, the design, synthesis and use of functional materials are uniquely combined with an integral advanced analytical program to study materials dynamics under operation conditions, building on our expertise of multifaceted in situ and in operandosynchrotron spectroscopy and microscopy techniques. The advanced analytical experiments are performed by our team members using national synchrotron facilities such as Stanford Synchrotron Radiation Lightsource (SLAC) and Advanced Light Source (LBNL), and using national electron microscopy centers such as Center for Functional Nanomaterials (BNL) and National Center for Electron Microscopy (NCEM).

  1. Mu, L.; Yuan, Q.; Tian, C.; Wei, C.; Zhang, K.; Liu, J.; Pianetta, P.; Doeff, M. M.; Liu, Y.; Lin, F. Propagation Topography of Redox Phase Transformations in Heterogeneous Layered Oxide Cathode Materials. Nature Communications, 9, 2810 (2018).
  2. Rahman, M. M.; Xu, Y.; Cheng, H.; Shi, Q.; Kou, R.; Mu, L.; Liu, Q.; Xia, S.; Xiao, X.; Sun, C.-J.; Sokaras, D.; Nordlund, D.; Zheng, J.-C.; Liu, Y.; Lin, F. Empowering Multicomponent Cathode Materials for Sodium Ion Batteries by Exploring Three-Dimensional Compositional Heterogeneities. Energy & Environmental Science, DOI: 10.1039/c8ee00309b (2018).
  3. Mu, L.; Lin, R.; Xu, R.; Han, L.; Xia, S.; Sokaras, D.; Steiner, J. D.; Weng, T-C.; Nordlund, D.; Doeff, M. M.; Liu, Y.; Zhao, K.; Xin, H. L.; Lin, F. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. Nano Letters, 18, 3241-3249 (2018). 
  4. Steiner, J.D.; Mu, L.; Walsh, J.; Rahman, M.M.; Zydlewski, B.; Michel, M.; Xin, H.L.; Nordlund, D.; Lin, F. Accelerated Evolution of Surface Chemistry Determined by Temperature and Cycling History in Nickel-Rich Layered Cathode Materials. ACS Applied Materials & Interfaces, 10, 28, 23842-23850 (2018). 
  5. Kautz, D. J.; Tao, L.; Mu, L.; Nordlund, D.; Feng, X.; Zheng, Z.; Lin, F. Understanding the Critical Chemistry to Inhibit Lithium Consumption in Lean Lithium Metal Composite Anodes. Journal of Materials Chemistry A 6, 16003-16011 (2018).
  6. Mu, L.; Rahman, M. M.; Zhang, Y.; Feng, X.; Du, X.-W.; Nordlund, D.; Lin, F. Surface Transformation by a "Cocktail" Solvent Enables Stable Cathode Materials for Sodium Ion Batteries. Journal of Materials Chemistry A6, 2758-2766 (2018). 
  7. Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpryko, O. G.; Xin, H. L.; Tamura, N.; Tian, C.; Weng, T.-C.; Yang, X.; Meng, Y. S.; Nordlund, D.; Yang, W.; Doeff, M. M. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Reviews, 117, 13123-13186 (2017). 
  8. Lin, C.; Deng, S.; Kautz, D. J.; Xu, Z.; Liu, T.; Li, J.; Wang, N.; Lin, F. Intercalating Ti2Nb14O39 Anode Materials for Fast-Charging, High-Capacity and Safe Lithium-ion Batteries. Small, 13, 1702903 (2017). 
  9. Lin, F.; Cojocaru, B. E.; Williams, L. S.; Cadigan, C. A.; Tian, C.; Grecu, M. N.; Xin, H. L.; Vyas, S.; Parvulescu, V. I.; Richards, R. M. Intermediate Selectivity in the Oxidation of Phenols Using Plasmonic Au/ZnO Photocatalysts. Nanoscale 9 (27), 9359-9364 (2017). 
  10. Lin, F.; Nordlund, D.; Li, Y.; Quan, M. K.; Cheng, L.; Weng, T.-C.; Liu, Y.; Xin, H. L.; Doeff, M. M. Metal Segregation in Hierarchically Structured Cathode Materials for High-Energy Lithium Batteries. Nature Energy, 1, 15004 (2016). 
  11. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. -C.; Xin, H. L.; Doeff, M. M. Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries. Nature Communications, 5, 3529 (2014). 
  12. Lin, F.; Nordlund, D.; Weng, T. -C.; Zhu, Y.; Ban, C.; Richards, R. M.; Xin, H. L. Phase Evolution for Conversion Reaction Electrodes in Lithium-ion Batteries. Nature Communications, 5, 3358 (2014). 
  13. Wang, D.; Liu, S.; Wang, J.; Lin, R.; Kawasaki, M.; Rus, E.; Silberstein, K.; Lowe, M.; Lin, F.; Nordlund, D.; Liu, H.; Muller, D.; Xin, H.; Abruna, H. Spontaneous Incorporation of Gold in Palladium-based Ternary Nanoparticles Makes Highly Durable Electrocatalysts for Oxygen Reduction Reaction. Nature Communications 7, 11941(2016).
  14. Lin, F.; Nordlund, D.; Markus, I. M.; Weng, T.-C.; Xin, H. L.; Doeff, M. M. Profiling the Nanoscale Gradient in Stoichiometric Layered Cathode Particles for Lithium-ion Batteries. Energy & Environmental Science 7, 3077–3085 (2014). 
  • Ralph E. Powe Junior Faculty Enhancement Award, 2017 
  • Spicer Young Investigator Award, DOE SLAC National Acceleratory Laboratory, 2015
  • Finalist of Young Scientists Award, International Society of Solid State Ionics, 2015
  • Top 10 Scientific Achievements, DOE Brookhaven National Laboratory, 2014
  • Chair, San Francisco Section of The Electrochemical Society, 2013-2014
  • Award for Graduate Research Excellence, Chemistry/Colorado School of Mines, 2013
  • National Scholarship, China, 2008
  • Samsung Scholarship, Samsung Group, 2007
  • B.S. Materials Science & Engineering, Tianjin University, China, 2009
  • Ph.D. Materials Science, Colorado School of Mines, 2012
  • Graduate Researcher, National Renewable Energy Laboratory, 2010–2012
  • Postdoctoral Fellow, Lawrence Berkeley National Lab, 2013–2015
Feng Lin


Email: fenglin@vt.edu
Office: 323 Davidson Hall
Phone: 540-231-4067
Group Website: https://thelinlabatvt.weebly.com/

Google Scholar